Comparison of Bayesian Spatial Ecological Regression Models for Investigating the Incidence of Breast Cancer in Iran, 2005- 2008.
نویسندگان
چکیده
BACKGROUND Breast cancer is the most prevalent kind of cancer among women in Iran. Regarding the importance of cancer prevention and considerable variation of breast cancer incidence in different parts of the country, it is necessary to recognize regions with high incidence of breast cancer and evaluate the role of potential risk factors by use of advanced statistical models. The present study focussed on incidence of breast cancer in Iran at the province level and also explored the impact of some prominent covariates using Bayesian models. MATERIALS AND METHODS All patients diagnosed with breast cancer in Iran from 2005 to 2008 were included in the study. Smoking, fruit and vegetable intake, physical activity, obesity and the Human Development Index (HDI), measured at the province level, were considered as potential modulating factors. Gamma-Poisson, log normal and BYM models were used to estimate the relative risk of breast cancer in this ecological investigation with and without adjustment for the covariates. RESULTS The unadjusted BYM model had the best fit among applied models. Without adjustment, Isfahan, Yazd, and Tehran had the highest incidences and Sistan- Baluchestan and Chaharmahal-Bakhtiari had the lowest. With the adjusted model, Khorasan-Razavi, Lorestan and Hamedan had the highest and Ardebil and Kohgiluyeh-Boyerahmad the lowest incidences. A significantly direct association was found between breast cancer incidence and HDI. CONCLUSIONS BYM model has better fit, because it contains parameters that allow including effects from neighbors. Since HDI is a significant variable, it is also recommended that HDI should be considered in future investigations. This study showed that Yazd, Isfahan and Tehran provinces feature the highest crude incidences of breast cancer.
منابع مشابه
Spatial structure of breast cancer using Poisson generalized linear mixed model in Iran
Background: Breast cancer is one of the most common diseases in women and causes more deaths rather than other cancers. The increasing trend of breast cancer in Iran makes clear the need of extensive breast cancer research in this area. Some studies showed that in the variety countries and even in the different areas in one country has different risk of breast cancer incidence and this is a rea...
متن کاملGeographical Distribution of Breast Cancer in Hamadan Province during 2008-2015 Using Bayesian Method
Background and Objectives: Breast cancer has the highest incidence in the Iranian women. Methods: A cross-sectional study was conducted. All female with breast cancer during 2008-2015 were enrolled. Breast cancer registration is based on the pathology method in Iran. The information about female with breast cancer was collected from their files in the cancer registry department of Hamadan H...
متن کاملExploring the spatial patterns of three prevalent cancer latent risk factors in Iran; Using a shared component model
Background and aims: The aim of this study was the modeling of the incidence rates of Colorectal, breast and prostate cancers using a shared component model in order to explore the spatial pattern of their shared risk factors (i.e., obesity and low physical activity) affecting on cancer incidence, and also to estimate the relative weight of these shared components. Methods: In this study,...
متن کاملComparison of Random Survival Forests for Competing Risks and Regression Models in Determining Mortality Risk Factors in Breast Cancer Patients in Mahdieh Center, Hamedan, Iran
Introduction: Breast cancer is one of the most common cancers among women worldwide. Patients with cancer may die due to disease progression or other types of events. These different event types are called competing risks. This study aimed to determine the factors affecting the survival of patients with breast cancer using three different approaches: cause-specific hazards regression, subdistri...
متن کاملSpatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients
In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asian Pacific journal of cancer prevention : APJCP
دوره 16 14 شماره
صفحات -
تاریخ انتشار 2015